top of page
Search
sstendovik1983

Analog And Digital Communication By Tl Singal Pdf Free 60: Download the Best Book on Communication S



Communications signals can be sent by analog signals or digital signals via analog communication systems or digital communication systems. Analog signals vary continuously with respect to the information, while digital signals encode information as a set of discrete values (e.g., a set of ones and zeroes).[41] During propagation and reception, information contained in analog signals is degraded by undesirable physical noise. Commonly, the noise in a communication system can be expressed as adding or subtracting from the desirable signal in a random way. This form of noise is called additive noise, with the understanding that the noise can be negative or positive at different instances.




Analog And Digital Communication By Tl Singal Pdf Free 60 !!TOP!!



Unless the additive noise disturbance exceeds a certain threshold, the information contained in digital signals will remain intact. Their resistance to noise represents a key advantage of digital signals over analog signals. However, digital systems fail catastrophically when noise exceeds the system's ability to autocorrect. On the other hand, analog systems fail gracefully: as noise increases, the signal becomes progressively more degraded but still usable. Also, digital transmission of continuous data unavoidably adds quantization noise to the output. This can be reduced, but not entirely eliminated, only at the expense of increasing the channel bandwidth requirement.


The term "channel" has two different meanings. In one meaning, a channel is the physical medium that carries a signal between the transmitter and the receiver. Examples of this include the atmosphere for sound communications, glass optical fibers for some kinds of optical communications, coaxial cables for communications by way of the voltages and electric currents in them, and free space for communications using visible light, infrared waves, ultraviolet light, and radio waves. Coaxial cable types are classified by RG type or "radio guide", terminology derived from World War II. The various RG designations are used to classify the specific signal transmission applications.[42] This last channel is called the "free space channel". The sending of radio waves from one place to another has nothing to do with the presence or absence of an atmosphere between the two. Radio waves travel through a perfect vacuum just as easily as they travel through air, fog, clouds, or any other kind of gas.


The other meaning of the term "channel" in telecommunications is seen in the phrase communications channel, which is a subdivision of a transmission medium so that it can be used to send multiple streams of information simultaneously. For example, one radio station can broadcast radio waves into free space at frequencies in the neighborhood of 94.5 MHz (megahertz) while another radio station can simultaneously broadcast radio waves at frequencies in the neighborhood of 96.1 MHz. Each radio station would transmit radio waves over a frequency bandwidth of about 180 kHz (kilohertz), centered at frequencies such as the above, which are called the "carrier frequencies". Each station in this example is separated from its adjacent stations by 200 kHz, and the difference between 200 kHz and 180 kHz (20 kHz) is an engineering allowance for the imperfections in the communication system.


In the example above, the "free space channel" has been divided into communications channels according to frequencies, and each channel is assigned a separate frequency bandwidth in which to broadcast radio waves. This system of dividing the medium into channels according to frequency is called "frequency-division multiplexing". Another term for the same concept is "wavelength-division multiplexing", which is more commonly used in optical communications when multiple transmitters share the same physical medium.


Modulation can also be used to transmit the information of low-frequency analog signals at higher frequencies. This is helpful because low-frequency analog signals cannot be effectively transmitted over free space. Hence the information from a low-frequency analog signal must be impressed into a higher-frequency signal (known as the "carrier wave") before transmission. There are several different modulation schemes available to achieve this [two of the most basic being amplitude modulation (AM) and frequency modulation (FM)]. An example of this process is a disc jockey's voice being impressed into a 96 MHz carrier wave using frequency modulation (the voice would then be received on a radio as the channel "96 FM").[45] In addition, modulation has the advantage that it may use frequency division multiplexing (FDM).


A telecommunications network is a collection of transmitters, receivers, and communications channels that send messages to one another. Some digital communications networks contain one or more routers that work together to transmit information to the correct user. An analog communications network consists of one or more switches that establish a connection between two or more users. For both types of networks, repeaters may be necessary to amplify or recreate the signal when it is being transmitted over long distances. This is to combat attenuation that can render the signal indistinguishable from the noise.[46]Another advantage of digital systems over analog is that their output is easier to store in memory, i.e. two voltage states (high and low) are easier to store than a continuous range of states.


Mobile phones have had a significant impact on telephone networks. Mobile phone subscriptions now outnumber fixed-line subscriptions in many markets. Sales of mobile phones in 2005 totalled 816.6 million with that figure being almost equally shared amongst the markets of Asia/Pacific (204 m), Western Europe (164 m), CEMEA (Central Europe, the Middle East and Africa) (153.5 m), North America (148 m) and Latin America (102 m).[69] In terms of new subscriptions over the five years from 1999, Africa has outpaced other markets with 58.2% growth.[70] Increasingly these phones are being serviced by systems where the voice content is transmitted digitally such as GSM or W-CDMA with many markets choosing to deprecate analog systems such as AMPS.[71]


In a broadcast system, the central high-powered broadcast tower transmits a high-frequency electromagnetic wave to numerous low-powered receivers. The high-frequency wave sent by the tower is modulated with a signal containing visual or audio information. The receiver is then tuned so as to pick up the high-frequency wave and a demodulator is used to retrieve the signal containing the visual or audio information. The broadcast signal can be either analog (signal is varied continuously with respect to the information) or digital (information is encoded as a set of discrete values).[40][79]


In digital television broadcasting, there are three competing standards that are likely to be adopted worldwide. These are the ATSC, DVB and ISDB standards; the adoption of these standards thus far is presented in the captioned map. All three standards use MPEG-2 for video compression. ATSC uses Dolby Digital AC-3 for audio compression, ISDB uses Advanced Audio Coding (MPEG-2 Part 7) and DVB has no standard for audio compression but typically uses MPEG-1 Part 3 Layer 2.[82][83] The choice of modulation also varies between the schemes. In digital audio broadcasting, standards are much more unified with practically all countries choosing to adopt the Digital Audio Broadcasting standard (also known as the Eureka 147 standard). The exception is the United States which has chosen to adopt HD Radio. HD Radio, unlike Eureka 147, is based upon a transmission method known as in-band on-channel transmission that allows digital information to "piggyback" on normal AM or FM analog transmissions.[84]


However, despite the pending switch to digital, analog television remains being transmitted in most countries. An exception is the United States that ended analog television transmission (by all but the very low-power TV stations) on 12 June 2009[85] after twice delaying the switchover deadline. Kenya also ended analog television transmission in December 2014 after multiple delays. For analog television, there were three standards in use for broadcasting color TV (see a map on adoption here). These are known as PAL (German designed), NTSC (American designed), and SECAM (French-designed). For analog radio, the switch to digital radio is made more difficult by the higher cost of digital receivers.[86] The choice of modulation for analog radio is typically between amplitude (AM) or frequency modulation (FM). To achieve stereo playback, an amplitude modulated subcarrier is used for stereo FM, and quadrature amplitude modulation is used for stereo AM or C-QUAM. 2ff7e9595c


1 view0 comments

Recent Posts

See All

Encha a geladeira mod apk

Fill Up Fridge MOD APK: um jogo de quebra-cabeça divertido e desafiador Você adora jogos de quebra-cabeça que testam sua lógica e...

Comments


bottom of page